Gdynia, Poland

Logistics Systems Engineering

Inżynieria systemów logistycznych

Bachelor's - engineer
Field of studies: Logistics
Language: PolishStudies in Polish
Subject area: economy and administration
Kind of studies: full-time studies, part-time studies
  • Description:

  • pl
University website: www.merito.pl/english/gdansk
Engineering
Engineering is the creative application of science, mathematical methods, and empirical evidence to the innovation, design, construction, operation and maintenance of structures, machines, materials, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
Logistics
Logistics is generally the detailed organization and implementation of a complex operation. In a general business sense, logistics is the management of the flow of things between the point of origin and the point of consumption in order to meet requirements of customers or corporations. The resources managed in logistics can include physical items such as food, materials, animals, equipment, and liquids; as well as abstract items, such as time and information. The logistics of physical items usually involves the integration of information flow, materials handling, production, packaging, inventory, transportation, warehousing, and often security.
Systems Engineering
Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, mechanical engineering, manufacturing engineering, control engineering, software engineering, electrical engineering, cybernetics, organizational studies and project management. Systems engineering ensures that all likely aspects of a project or system are considered, and integrated into a whole.
Systems Engineering
Chestnut (1965) devotes one page of the more than 600 pages in his book to man as an operator or an element of man-machine systems. Hall (1962) devotes about a page and a half to human factors applications. Machol (1965) has a brief chapter of limited content on human factors, in which man is considered only as an information processor. Shearer et al. (1967) mention a driver and a steersman in their introductory chapter; thereafter, there is no of man, his characteristics, or his behavior. Wilson (1965) allocates three pages to human factors. For every book on systems engineering containing a mention of the human operator, there is another in which the words human, man, human factors, and psychology do not appear.
Kenyon B. De Greene, Earl A. Alluisi (1970) Systems psychology. p. 75
Systems Engineering
Systems engineering is a highly technical pursuit and if a nontechnical man attempts to direct the systems engineering as such, it must end up in a waste of technical talent below.
Aeronautical Engineering Review (1957) Vol. 16. p. 43
Logistics
Decision theory can be pursued not only for the purposes of building foundations for political economy, or of understanding and explaining phenomena that are in themselves intrinsically interesting, but also for the purpose of offering direct advice to business and governmental decision makers. For reasons not clear to me, this territory was very sparsely settled prior to World War II. Such inhabitants as it had were mainly industrial engineers, students of public administration, and specialists in business functions, none of whom especially identified themselves with the economic sciences. Prominent pioneers included the mathematician, Charles Babbage, inventor of the digital computer, the engineer, Frederick Taylor and the administrator, Henri Fayol.
During World War II, this territory, almost abandoned, was rediscovered by scientists, mathematicians, and statisticians concerned with military management and logistics, and was renamed “operations research” or “operations analysis.” So remote were the operations researchers from the social science community that economists wishing to enter the territory had to establish their own colony, which they called “management science”.
Herbert A. Simon, "Rational decision making in business organizations." Nobel Prize lecture 1978, published in: The American economic review 69(4) (1979): 493-513;

Contact:

Śląska 35/37 str.
81-310 Gdynia
phone: +48 58 522 77 80

Privacy Policy