Analysis
Analysis is the process of breaking a complex topic or substance into smaller parts in order to gain a better understanding of it. The technique has been applied in the study of mathematics and logic since before Aristotle (384–322 B.C.), though analysis as a formal concept is a relatively recent development.
Research
Research comprises "creative and systematic work undertaken to increase the stock of knowledge, including knowledge of humans, culture and society, and the use of this stock of knowledge to devise new applications." It is used to establish or confirm facts, reaffirm the results of previous work, solve new or existing problems, support theorems, or develop new theories. A research project may also be an expansion on past work in the field. Research projects can be used to develop further knowledge on a topic, or in the example of a school research project, they can be used to further a student's research prowess to prepare them for future jobs or reports. To test the validity of instruments, procedures, or experiments, research may replicate elements of prior projects or the project as a whole. The primary purposes of basic research (as opposed to applied research) are documentation, discovery, interpretation, or the research and development (R&D) of methods and systems for the advancement of human knowledge. Approaches to research depend on epistemologies, which vary considerably both within and between humanities and sciences. There are several forms of research: scientific, humanities, artistic, economic, social, business, marketing, practitioner research, life, technological, etc.
Analysis
Now analysis is of two kinds, the one directed to searching for the truth and called theoretical, the other directed to finding what we are told to find and called problematical. (1) In the theoretical kind we assume what is sought as if it were existent and true, after which we pass through its successive consequences, as if they too were true and established by virtue of our hypothesis, to something admitted: then (a), if that something admitted is true, that which is sought will also be true and the proof will correspond in the reverse order to the analysis, but (b), if we come upon something admittedly false, that which is sought will also be false. (2) In the problematical kind we assume that which is propounded as if it were known, after which we pass through its successive consequences, taking them as true, up to something admitted: if then (a) what is admitted is possible and obtainable, that is, what mathematicians call given, what was originally proposed will also be possible, and the proof will again correspond in reverse order to the analysis, but if (b) we come upon something admittedly impossible, the problem will also be impossible.
Pappus, (c. 330 AD) as quoted by Thomas Little Heath, The Thirteen Books of Euclid's Elements (1908) Vol. 1, Ch. IX. §6.
Analysis
A great part of the progress of formal thought... has been due to the invention of what we may call stenophrenic, or short-mind, symbols. These... disengage the mind from the consideration of ponderous and circuitous mechanical operations and economise its energies for the performance of new and unaccomplished tasks of thought. And the advancement of those sciences has been most notable which have made the most extensive use of these... Here mathematics and chemistry stand pre-eminent. The ancient Greeks... even admitting that their powers were more visualistic than analytic, were yet so impeded by their lack of short-mind symbols as to have made scarcely any progress whatever in analysis. Their arithmetic was a species of geometry. They did not possess the sign for zero, and also did not make use of position as an indicator of value. ...The historical calculations of Archimedes, his approximation to the value of π, etc., owing to this lack of appropriate... symbols, entailed enormous and incredible labors, which, if they had been avoided, would... have led to [even] great[er] discoveries.
Thomas J. McCormack, "Joseph Louis Lagrange. Biographical Sketch" (1898) in his translation of Joseph Louis Lagrange, Lectures on Elementary Mathematics (1898); 2nd edition (1901) p. vii.
Research
During all those years of experimentation and research, I never once made a discovery. All my work was deductive, and the results I achieved were those of invention, pure and simple. I would construct a theory and work on its lines until I found it was untenable. Then it would be discarded at once and another theory evolved. This was the only possible way for me to work out the problem. … I speak without exaggeration when I say that I have constructed 3,000 different theories in connection with the electric light, each one of them reasonable and apparently likely to be true. Yet only in two cases did my experiments prove the truth of my theory. My chief difficulty was in constructing the carbon filament. . . . Every quarter of the globe was ransacked by my agents, and all sorts of the queerest materials used, until finally the shred of bamboo, now utilized by us, was settled upon.
Thomas Edison on his years of research in developing the electric light bulb, as quoted in "Talks with Edison" by George Parsons Arthropod in Harper magazine, Vol. 80 (February 1890), p. 425.